继 《从0-1,如何做好互金领域的运营》 , 《互金运营必懂的3类专业术语》 ,今天结合实际分享关于金融业务中最为核心的风控环节的内容。
谈起风控,大家都不陌生,任何一家企业的管理过程中都会有相应的风控手段,减少风险事件发生的可能性,或者在风险不可避免时,尽可能降低造成的损失,而不仅仅受限于互金或者传统金融行业。
进入到互联网+金融的时代,风控更多依赖于大数据,依赖于用户信息。在进行风险判断时,两个关键维度是: 用户还款能力和还款意愿。
用户的还款能力和还款意愿是属于信用属性极强的金融数据,另外还有一类属于信用属性较弱的用户行为数据。金融数据一般是借助央行征信,绑定的银行卡、信用卡所属机构,公安机关等能够进行背书的机构提供的接口数据做判断。而信用属性较弱的用户行为数据怎样有效关联进而判断用户信用风险,需要企业根据各自业务搭建数据模型。
风控过紧,虽然可以降低后期的坏账风险,但相应会降低业务总量。风控过松,业务量会上升,但后期风险加剧。对于风控,绝不是前篇一律的设计方式,需要根据自身业务和市场发展需求自适应调整。
以下可能是互金领域风控模型最常采用的信息组合维度:
(1)身份信息验证
在这里先普及一个专业术语:四要素。
用户的四要素信息包括:姓名、身份证号码、银行卡号码、手机号码。有些平台需要用户的强四要素信息,即需要增加手机号验证码。四要素信息验证,也就是对用户身份做基本判断。
系统通过将用户姓名、身份证号码与公安系统内的信息做比对,对用户身份是否合法做判断。通过用户提供的四要素进行银行卡鉴权,查询银联内的该银行卡是否有异常。
(2)银行卡信息验证
调用接口进行验证,是否是要求的卡(借记卡、信用卡),系统是否支持该银行卡,所属银行和该卡是否匹配。
(3)运营商认证
通过获取设备的通讯录信息、电话往来信息、账单信息、流量等。
(4)移动设备定位
一般通过三种方式对移动设备的位置进行判断:移动运营商基站、手机自带GPS或者App关联的GPS功能、WiFi。
(5)黑名单机制
不仅是黑名单,还有灰名单,白名单等。白名单很好理解,是优质用户。在借贷用户群体中,所有借贷方避之不及的就是黑名单和灰名单(区别对待)。
(6)前端风险拦截
每个企业需要根据本企业的用户特征和业务情况,搭建自己的风控模型,对用户行为、基础信息、进行分析用户按照要求提交全部信息,App端对用户填写的所有信息内容进行一次风控拦截。
(7)大数据分析
大数据分析涉及的维度较多,除该环节特有的模型搭建,也会对前面已经进行过验证的环节进行一个综合评分,这个环节更多是对前面几个环节资质不够优质的用户进行二次评分。
大数据分析是属于开放式的模块,不像前面资格认证、银行卡认证等有严格的要求。这里完全依据贷款企业的实际业务以及可以获取的数据资源,企业也可以搭建一个很有趣的数据模型。
(8)机器拦截
机器审核,更多的作用是保证用户填写的资料是完整无误的,从而降低人工审核以及风控管理的成本。
(9)人工审核
通过以上环环相扣的风控过程,如果仍然不放心,可以将综合评分较低的用户资料,进行最后一步人工审核。人工审核的过程无非是进一步对用户填写的资料进行验证,比如:拨打用户单位电话验证该用户是否在该单位工作等。
(10)催收
要解释的是,并不是在用户逾期或者坏账后才有催收,一些首逾把控较好的企业,在用户应还款日前的提醒也叫催收。常规的催收有手机推送、短信、自动电话。一些自建风控团队的企业,也会有自己的催收团队,或者找到外部第三方催收团队。
催收也是一个循序渐进的过程,用户不还款,你也不能暴力催收。催收看似简单直接,其实不亚于运营过程中的任何一个环节,要有精细化的催收策略。
根据催收的轻重缓解分为:协商谈判、高频电催、上门施压、全面施压、法律诉讼。
催收是个不太好听的名词,一些短信通道不支持发跟催收有关的字眼,一些自动电话供应商也不支持拨打催收相关的内容。目前催收成功率比较好的企业也仅仅有30%的成功率,想要做好催收,任重而道远。