时钟 是 FPGA 设计中最重要的信号,FPGA系统内大部分器件的动作都是在时钟的上升沿或者下降沿进行。无论是在输入,输出或是 寄存器 与寄存器之间,只要设计到时钟上升沿或者下降沿的采样,就会提到建立时间(setup ti me) 和保持时间(hold TI me) 。
建立时间(Tsu:set up TI me)是指在时钟沿到来之前数据从不稳定到稳定所需的时间,如果建立的时间不满足要求那么数据将不能在这个时钟上升沿被稳定的打入 触发器 ; 保持时间(Th:hold TI me)是指数据稳定后保持的时间,如果保持时间不满足要求那么数据同样也不能被稳定的打入触发器。
建立时间和保持时间这两个指标说明器件本身不是理想的(有时延等),正是这个不理想的特性,限制了FPGA的时钟工作频率。
首先我们都知道setup TI me 和holdup time是由器件决定的,并不是说可以随着你FPGA设计的改变而改变。那么FPGA时钟频率是怎么计算的呢,在不考虑时钟延时抖动等条件下,一个信号从触发器的D端到Q端的延时假设是Tcd,从Q端出来之后会经过组合 电路 延时,这里注意即使没有组合电路,就单单经过导线也是有延时的,这个延时称作Tdelay,经过这个延时之后,信号将要去下一个触发器,而且必须要满足触发器的建立时间tsetup,不然时钟无法采样到稳定的数据。
所以这三个时间加起来应该比时钟周期要小,否则数据无法打入下一个触发器,那就会进入亚稳态。Tcd+Tdelay+Tsetup<t,时钟频率f=1 p="" t,周期越短频率越高,那么最短周期是什么呢就显而易见了。上面式子中tcd="" 和tsetup="" 都是由器件本身决定的,我们唯一能减小的就是tdelay,在电路中tdelay有无数条,有长有短,而那个最长的路径(关键路径)直接决定了fpga时钟能跑多快,这就是为什么我们做时序优化总是要从关键路径下手。
至于FPGA时钟频率与holdup time的关系,具体做设计的时候还是需要满足Tcd+Tdelay+Tsetup
建立时间与保持时间的简单示意图如下图1所示,在图1中我们看到clk_r3的前后各有一条虚线,前一条虚线(最左边的虚线,左边代表出现时间早,与modelsim仿真时信号依次从左往右出现)到clk_r3上升沿的这段时间即为建立时间,clk_r3上升沿到后一条虚线(最右边的虚线)的这段时间即为保持时间。
前面对建立时间和保持时间下定义时提到过,在这段时间内不能够有数据的变化,数据必须保持稳定。而在这个波形中,也确实没有看到在建立时间和保持时间内,reg3in的数据有任何的变化,因此我们可以稳定的将reg3in的数据 锁 存到reg3的输出reg3out中。
同样的一些信号,但我们发现reg3in在clk_r3的建立时间内发生了变化,这带来的后果就是clk_r3上升沿锁存到的reg3in数据不确定,那么随后的reg3out值也会处于一个不确定状态。比如第一个时钟周期,原本reg3in应该是稳定的低电平,但是由于整个路径上的延时时间(Tcd+Tdelay)过长,导致了reg3in在clk_r3的建立时间内数据还未能稳定下来,在建立时间内信号出现了电平从高到低的变化,即不稳定的状态,那么导致的后果就是reg3out的最终输出不是确定的状态,很可能是忽高忽低的亚稳态,而不是原本期望的低电平。
我们再来看看保持时间违规的情况,这次是数据传输得太快了(不满足Tcd+Tdelay>Tholdup,也就是Tcd+Tdelay时延太小),原本应该下一个时钟周期到达clk_r3的数据竟然在clk_r3的前一个时钟周期的保持时间还未过去就来到了。因此,它出现的最终危害也是后端输出的reg3out处于不确定的状态。