好的电源 电路 设计需要良好的PCB布局走线设计来承载, PCB设计 的好坏直接关系到电路最终的性能。在产品 开关 过程中遇到太多因PCB设计问题而导致的改版,如滤波电路和功率电路在距离和角度上设计的不合理引起近场噪声 耦合 严重,导致多次修改E MI 滤波器 参数却不能有效降低传导噪声,致使产品不得不重新优化布局而导致改版。而在产品开发过程中,如果能遵循一些规则,避免一些常规的错误,就能有效的保障产品的性能,下面就为大家介绍一些重要的PCB布局 布线 建议。
一|电源整体布局
在电源PCB预布局时,优先采用电源输入-浪涌防护-电路缓起-EMI滤波- 电源模块 一字型布局,避免采用U型布局,防止电源内部高频泄露磁场( 高频变压器 、 功率电感 等)耦合到电源输入端及滤波电路上,可能会导致电源低频段传导 测试 超标。如果由于电源结构体等其它因素限制必须采用U型布局,可采用分腔屏蔽的方式隔离功率电路与滤波电路,同时也可以在靠近电源 连接器 的地方预留滤波 电容 。
二|EMI滤波电路布局
对于EMI滤波器电路, 共模电感 前后的差模电容采用凯尔文接法,共模 电感 下方铜皮挖空,且不走其他信号。共模电感右侧的Y电容要紧靠电源模块放置,且要保证Y电容低阻抗接地,如果Y电容离螺钉位置较远,要用不低于250mil的铜皮接到螺钉上。
三|关键回路及电压动点布局
对于电源变换器中的开关回路和整流回路,一定要控制其回路面积,因为回路面积越大,其差模近场辐射越大,会干扰周围的低电压控制信号和反馈信号正常工作。电压动点是一个很大的dv/dt,动点(开关器件与磁性器件连接的走线)的面积要严格控制,在满足同流的情况下尽量减小宽度,不然动点对机壳的寄身电容会加大,导致天线的辐射效率增加,干扰加大。
四|磁性 元器件 布局
对于高频 变压器 和电感下方,要将其下方的铜皮挖空,尽量不要让信号网络深入到下方去,因为变压器和电感本身就是一个高频磁场源,容易将噪声耦合到下方的网络上。
五|控制电路布局
功率电路要和控制电路分开布局,因为功率电路一般是高电压、大 电流 、高频率电路,其近场干扰严重。而控制电路一般为低电压信号,其抗干扰能力较弱,因此两个要分开布局。再者,功率地和控制地也要分开走线,单点接地,防止功率电路与控制电路产生共地阻抗耦合。
六|驱动电路布局
驱动电路到开关管的距离要短,且由于驱动信号也是一个大di/dt的干扰源,驱动信号线和地线的环路面积要控制到最小。
七|原副边电容布局
原边静点到副边静点之间的滤波电容要紧靠着变压器和开关管放置,以减小原边动点-变压器初次级寄身电容-副边静点-原边静点这个共模回路面积,给共模噪声提供低阻抗回流路径,减小流向LISN的噪声电流。
八|结语
以上就是电源PCB布局走线常用的一些规则,从电路各模块的角度出发,更方便我们理解和记忆。通过本文的学习,相信大家对电源EMI有了更深的理解。
原文标题:如何将电源PCB关键布局走线优化到最佳状态?
文章出处:微信号:yqylw2018 ,微信公众号: 电磁兼容与安规】欢迎添加关注!文章转载请注明出处