DC/DC转换器传导EMI-第2部分,噪声传播和滤波

 简介

    开关   频率是在电源转换技术发展过程中促进尺寸减小的主要因素。为了符合相关法规,通常需要采用电磁干扰 (E     MI       滤波器   ,而该滤波器通常在系统总体尺寸和体积中占据很大一部分,因此了解高频转换器的 EMI 特性至关重要。

在本系列文章的第 2 部分,您将了解差模 (DM) 和共模 (CM) 传导发射噪声分量的噪声源和传播路径,从而深入了解     DC/DC   转换器的传导 EMI 特性。本部分将介绍如何从总噪声     测量   结果中分离出 DM/CM 噪声,并将以升压转换器为例,重点介绍适用于汽车应用的主要 CM 噪声传导路径。

 DM 和 CM 传导干扰

DM 和 CM 信号代表两种形式的传导发射。DM     电流   通常称为对称模式信号或横向信号,而 CM 电流通常称为非对称模式信号或纵向信号。图 1 显示了同步降压和升压 DC/DC 拓扑中的 DM 和 CM 电流路径。Y     电容   CY1 和 CY2 分别从正负电源线连接到 GND,轻松形成了完整的 CM 电流传播路径 [1]。

 DC/DC转换器传导EMI_第2部分,噪声传播和滤波_设计制作_制造/封装

图 1:同步降压 (a) 和升压 (b) 转换器 DM 和 CM 传导噪声路径。

 DM 传导噪声

DM 噪声电流 (IDM) 由转换器固有开关动作产生,并在正负电源线 L1 和 L2 中以相反方向流动。DM 传导发射为“电流驱动型”,与开关电流 (di/dt)、磁场和低     阻抗   相关。DM 噪声通常在较小的回路区域流动,返回路径封闭且紧凑。

例如,在连续导通模式 (CCM) 下,     降压转换器   会产生一种梯形电流,且这种电流中谐波比较多。这些谐波在电源线上会表现为噪声。降压转换器的输入电容(图 1 中的 CIN)有助于滤除这些高阶电流谐波,但由于电容的非理想寄生特性(等效串联     电感   (ESL) 和等效串联     电阻   (ESR)),有些谐波难免会以 DM 噪声形式出现在电源电流中,即使在添加实用的 EMI 输入滤波器级之后也于事无补。

 CM 传导噪声

另一方面,CM 噪声电流 (ICM) 会流入接地 GND 线并通过 L1 和 L2 电源线返回。CM 传导发射为“电压驱动型”,与高转换率电压 (dv/dt)、电场和高阻抗相关。在非隔离式 DC/DC 开关转换器中,由于 SW 节点处的 dv/dt 较高,产生了 CM 噪声,从而导致产生位移电流。该电流通过与     MOSFET   外壳、散热器和 SW 节点走线相关的寄生电容     耦合   到 GND 系统。与转换器输入或输出端的接线较长相关的耦合电容也可能构成 CM 噪声路径。

图 1 中的 CM 电流通过输入 EMI 滤波器的 Y 电容(CY1 和 CY2)返回。另一条返回路径为,通过 LISN 装置(在本系列文章的第 1 部分中讨论过)的 50Ω 测量阻抗返回,这显然是不合需要的。尽管 CM 电流的幅值远小于 DM 电流,但相对来说更难以处理,因为它通常在较大的传导回路区域流动,如同天线一般,可能增加辐射 EMI。

图 2 显示了 Fly-Buck(隔离式降压)转换器的 DM 和 CM 传导路径。CM 电流通过     变压器   T1 的集总绕组间电容(图 2 中的 CPS)流到二次侧,并通过接地 GND 连接返回。图 2 还显示了 CM 传播的简化等效     电路  

 DC/DC转换器传导EMI_第2部分,噪声传播和滤波_设计制作_制造/封装

图 2:Fly-Buck 隔离式转换器 DM 和 CM 传导噪声传播路径 (a);CM 等效电路 (b)。

在实际的转换器中,以下元件寄生效应均会影响电压和电流波形以及 CM 噪声:

·MOSFET 输出电容 (COSS)。

·整流     二极管   结电容 (CD)。

·主电感绕组的等效并联电容 (EPC)。

·输入和输出电容的等效串联电感 (ESL)。

相关内容,我将在第 3 部分中进一步详细介绍。

 噪声源和传播路径

正如第 1 部分所述,测量 DC/DC 转换器传导发射(对于 CISPR 32 标准,规定带宽范围为 150kHz 至 30MHz;对于 CISPR 25 标准,则规定频率范围为更宽的 150kHz 至 108MHz)时,测量的是每条电源线上 50Ω LISN 电阻两端相对于接地 GND 的总噪声电压或“非对称”干扰 [1]。

图 3 显示了 EMI 噪声的产生、传播和测量模型 [1]。噪声源电压用 VN 表示,噪声源和传播路径阻抗分别用 ZS 和 ZP 表示。LISN 和 EMI 接收器的高频等效电路仅为两个 50Ω 电阻。图 3 还显示了相应的 DM 和 CM 噪声电压 VDM 和 VCM,它们由两条电源线的总噪声电压 V1 和 V2 计算得出。DM(或“对称”)电压分量定义为 V1 和 V2 矢量差的一半;而 CM(或“非对称”)电压分量定义为 V1 和 V2 矢量和的一半 [2]。请注意,本文提供的 VDM 通用定义与 CISPR 16 标准规定的值相比,可能存在 6dB 的偏差。

 DC/DC转换器传导EMI_第2部分,噪声传播和滤波_设计制作_制造/封装

图 3:传导 EMI 发射模型,其中显示了噪声源电压、噪声传播路径和 LISN 等效电路。

CM 噪声源阻抗主要是容性阻抗,并且 ZCM 随频率的增大而减小。而 DM 噪声源阻抗通常为阻性和感性阻抗,并且 ZDM 随频率的增大而增大。

要降低传导噪声水平,确保噪声源本身产生较少的噪声是其中的一种方法。对于噪声传播路径,可以通过滤波或其他方法调整阻抗,从而减小相应的电流。例如,要降低降压或升压转换器中的 CM 噪声,需要降低 SW 节点 dv/dt(噪声源)、通过减小接地寄生电容来增大阻抗、或者使用 Y 电容和/或 CM 扼流器进行滤波。本系列文章的第 4 部分将详细介绍 EMI 抑制技术分类。

 DM 和 CM EMI 滤波

无源 EMI 滤波是最常用的 EMI 噪声抑制方法。顾名思义,这类滤波器仅采用无源元件。将这类滤波器设计用于电力电子设备时特别具有挑战性,因为滤波器端接的噪声源(开关转换器)和负载(     电线   线)阻抗是不断变化的 [2] [3]。

图 4a 显示了传统的 p 型 EMI 输入滤波器,以及整流和瞬态电压钳位功能(为直流/交流输入供电的 DC/DC 转换器提供     EMC   保护)。此外,图 4 还包括本系列文章第 1 部分中的 LISN 高频等效电路。

 DC/DC转换器传导EMI_第2部分,噪声传播和滤波_设计制作_制造/封装

图 4:传统的 EMC 输入滤波器 (a),包括 DM 等效电路 (b) 和 CM 等效电路 (c)。

典型 EMI 滤波器的两个 CM 绕组相互耦合,这两个绕组的 CM 电感分别为 LCM1 和 LCM2。DM 电感 LDM1 和 LDM2 分别是两个耦合的 CM 绕组的漏电感,并且还可能包括分立的 DM 电感。CX1 和 CX2 为 DM 滤波器电容,而 CY1 和 CY2 为 CM 滤波器电容。

通过将 EMI 滤波器去耦为 DM 等效电路和 CM 等效电路,可简化其设计。然后,可以分别分析滤波器的 DM 和 CM 衰减。去耦基于这样的假设,即 EMI 滤波器具有完美对称的电路结构。在实现的对称滤波器中,假设 LCM1 = LCM2 = LCM,CY1 = CY2 = CY,LDM1 = LDM2 = LDM,并且     印刷电路板       PCB   ) 布局也完美对称。DM 等效电路和 CM 等效电路分别如图 4b 和图 4c 所示 [4]。

但是,严格来说,实际情况下并不存在完美对称,因此 DM 和 CM 滤波器并不能完全去耦。而结构不对称可能导致 DM 噪声转变成 CM 噪声,或者 CM 噪声转变成 DM 噪声。通常,与转换器噪声源和 EMI 滤波器参数相关的不平衡性可能导致这种模式转变 [5]。

 DM 和 CM 噪声分离

传导 EMI 的初始测量结果通常显示 EMI 滤波器衰减不足。为了获得适当的 EMI 滤波器设计,必须独立研究待测设备 (EUT) 产生的传导发射的 DM 和 CM 噪声电压分量。

将 DM 和 CM 分开处理有助于确定相关 EMI 源并对其进行故障排除,从而简化 EMI 滤波器设计流程。正如我在上一部分强调的那样,EMI 滤波器采用了截然不同的滤波器元件来抑制 DM 和 CM 发射。在这种情况下,一种常见的诊断检查方法是将传导噪声分离为 DM 噪声电压和 CM 噪声电压。

图 5 显示了无源和有源两种实现形式的 DM/CM 分离器电路,该电路有助于直接同时测量 DM 和 CM 发射。图 5a 中的无源分离器电路 [4] 使用宽带     RF   变压器(如 Coilcraft 的 SWB1010 系列)在 EMI 覆盖的频率范围内实现可接受的分离结果,其中 T1 和 T2 的特征阻抗 (ZO) 分别为 50Ω 和 100Ω。将一个 50Ω 的电阻与 DM 输出端口的频谱分析仪的输入阻抗串联,实现图 3 中提供的 VDM 表达式的“除 2”功能。

 DC/DC转换器传导EMI_第2部分,噪声传播和滤波_设计制作_制造/封装

图 5:实现的用于分离 DM/CM 噪声的无源 (a) 和有源 (b) 电路。

图 5b 展示的是使用低噪声、高带宽     运算放大器   的有源分离器电路 [6]。U1 和 U2 实现了 LISN 输出的理想输入阻抗矩阵,而 U3 和 U4 分别提供 CM 和 DM 电压。LCM 是一个 CM 线路滤波器(例如 Würth Elektronik 744222),位于差分     放大器   U4 的输入端,用于增大 DM 结果的 CM 抑制比(共模抑制比 [CMRR] ® - ¥dB)并最大限度地减少 CM/DM 交叉耦合。

 实际电路示例 - 汽车同步升压转换器

考虑图 6 中所示的同步升压转换器。该电路在汽车应用中很常见,通常作为预升压稳压器在冷启动或瞬态欠压条件下保持     电池   电压供应 [7]。

 DC/DC转换器传导EMI_第2部分,噪声传播和滤波_设计制作_制造/封装

图 6:汽车同步升压转换器(采用 50Ω/5μH LISN,用于 CISPR 25 EMI     测试   )。

在车辆底盘接地端直接连接一个 MOSFET 散热器,可以提高转换器的热性能和可靠性,但共模 EMI 性能会受到影响。图 6 所示的原理图中,包含升压转换器以及 CISPR 25 建议采用的两个 LISN 电路(分别连接在 L1 和 L2 输入线上)。

考虑到升压转换器的 CM 噪声传播路径,图 7 将 MOSFET Q1 和 Q2 替换为等效的交流电压流和电流源 [8]。图 7 中,还呈现了与升压电感 LF、输入电容 CIN 和输出电容 COUT 相关的寄生分量部分。特别是 CRL-GND,它是负载电路与底盘 GND 之间的寄生电容,包括长负载线和布线以及下游负载配置(例如,二次侧输出连接到底盘接地的隔离式转换器,或者用大型金属外壳固定到底盘上的电机驱动系统)所产生的寄生电容。

 DC/DC转换器传导EMI_第2部分,噪声传播和滤波_设计制作_制造/封装

图 7:具有 LISN 的同步升压拓扑的高频等效电路。只有在 LISN 中流动的 CM 电流路径与 CM 发射测量相关。

漏源开关(SW 节点)电压的上升沿和下降沿代表主要的 CM 噪声源。CP1 和 CP2 分别代表 SW 与底盘之间以及 SW 与散热器之间的有效寄生电容。图 8 显示了 SW 节点电容(电场)耦合为主要 CM 传播路径时简化的 CM 噪声等效电路。

 DC/DC转换器传导EMI_第2部分,噪声传播和滤波_设计制作_制造/封装

图 8:连有 LISN 的同步升压电路及其简化 CM 等效电路。

 总结

对于电力电子工程师而言,了解各种电源级拓扑中 DM 和 CM 电流的相关传播路径(包括与高 dv/dt 和 di/dt 开关相关的电容(电场)和电感(磁场)耦合)非常重要。在 EMI 测试过程中,将 DM 和 CM 发射分开处理有助于对相关 EMI 源进行故障排除,从而简化 EMI 滤波器设计流程。

在即将发表的本系列文章第三部分中,将全面介绍影响转换器开关性能和 EMI 信号的电路元件寄生部分。

2
17
0
51

相关资讯

  1. 1、从特朗普当选,看网红经济的隐忧和心理连接术2334
  2. 2、知乎向左,果壳朝右2448
  3. 3、苹果一妥协全世界沦陷3949
  4. 4、双11狂热背后的冷思考:传统零售的大数据、智能化转型才刚刚开2853
  5. 5、危险!拍照习惯性的“剪刀手”,正在泄漏你的指纹信息2596
  6. 6、张小龙的初心,会成就支付宝小程序的如意算盘?1902
  7. 7、亚马逊20年:贝佐斯的商业新哲学1364
  8. 8、“百度外卖+饿了么”联手,如何实现外卖市场的全面突击?3193
  9. 9、TikTok印度跌倒,山寨版Mitron吃饱1182
  10. 10、揭开智慧校园的神秘面纱:基础建设篇1228
全部评论(0)
我也有话说
0
收藏
点赞
顶部