随着我国经济的迅速发展,物流行业也产生了质的飞跃。仓储是现代物流的一个重要组成部分,在物流系统中起着至关重要的作用是厂商研究和规划的重点高效合理的仓储可以帮助厂商加快物资流动的速度,降低成本,保障生产的顺利进行,并可以实现对资源有效控制和管理。随着信息化步伐的不断加快,仓储物流还有很大的发展空间。
仓储物流技术是企业建立先进合理的仓储物流系统的关键,而市场需求和科技进步共同推动了全球仓储物流技术的快速发展。随着工业4.0发展,产品定制与个性化服务已逐渐成为市场发展的重要趋势,这对现代物流系统提出了更高要求。仓储物流系统作为物流与供应链的核心环节,其作业效率、服务质量和运营成本一直是企业重点关注的指标。高效合理的仓储物流系统可以帮助企业加快物资流动的速度,降低成本,保障生产顺利进行,并可以实现对资源的有效控制和管理。现代“仓储”已经不是传统意义上的“仓库”、“仓库管理”,而是在经济全球化与供应链一体化背景下的仓储,是以满足供应链上下游需求为目的,在特定的有形或无形场所,运用现代技术对物品进出、库存、分拣、包装、配送及其信息进行有效计划、执行和控制的物流活动。显然,仓储物流技术是企业建立先进合理仓储物流系统的关键。
从自动化到高柔性自动化
随着工业社会不断进步,仓储物流技术也逐渐由人工堆放平面库,到自动化刚性立体库,再到高柔性自动立体库发展。无人、高效和空间利用率高等优点,使自动化立体库逐步成为制造业和商业推崇的最佳仓储解决方案。然而传统自动化立体库具有刚性高的短板,很难满足灵活多变的物流服务的需求,第三方物流服务公司一般不采用这项自动化仓储技术。2003年世界首台穿梭车技术(的面世,让仓储物流技术真正进入高柔性自动化时代。穿梭车打破了一个巷道内只能有一台堆垛机作业的限制,实现了多台穿梭车分层作业的柔性解决方案。随着穿梭车技术的发展,四向穿梭车技术成为主流。
2010年德国弗劳恩霍夫物流研究院提出了“魔浮”穿梭车的概念,完成了世界上首辆既能在地面上又能在货架上自主行驶的多功能智能搬运机器人的研发。“魔浮”穿梭车彻底打通了仓储物流系统与生产系统之间的“隔墙”,实现了仓储与生产的无缝对接。传统穿梭车(包括四向穿梭车)的作业局限在仓库的货架上,不能在地面上行驶,要完成生产线的物料配送,必须经过中转环节。而“魔浮”穿梭车可以自主走出货架,像AGV小车一样直接把原材料送到产线,或者将成品直接从产线运送到成品库的货架上。这是仓储物流技术走向高柔性自动化的重要一步。
高密度化
随着城市化进程不断深入,土地的稀缺性问题日益严重,作为工业、商业和社会不可或缺的仓储物流用地也日趋紧缺,高密度仓储物流技术成为发展趋势。一方面传统的货架越建越高,有的甚至超过40米,以充分利用仓库有限的占地面积。这样的仓储系统一般利用超高堆垛机来完成出入库作业。另一方面是减少巷道的数量,实现货物在水平和垂直方向的高密度存放。这种三维密集型货架系统需要采用特殊的出入库方式,其最大的问题是无法实现对每件货物的直接出库作业。
AutoStore是一种新型高密度仓储技术。通常情况下,标准尺寸的料箱(600mm×400mm×310 mm/220mm)存放在立式货格内,从仓库地面垂直向上堆叠;一组机器人在立式存储货格顶部的铝制轨道上水平行走,存取料箱;每台机器人有8个轮子,其中4个沿X轴方向行走,另4个沿Y轴方向行走;每台机器人配有4条钢索提升装置,能将每一垛中最上方的料箱垂直提升至货格顶部;立式存储货格每垛可存储最多16个料箱(高度达4.9米),每个料箱中可存储单一品项或多个品项的货物;料箱能够根据系统内的存储需求,简易地向X轴和Y轴方向扩展;数千只料箱彼此相邻,每16个一垛存放在密集货格中,省去了巷道,存储密度高。AutoStore可以实现自动化存取和“货到人”拆零拣选解决方案,场地使用比较灵活。因为垂直码垛方式只能实现LIFO存储策略,必须依靠合适的存取策略和优化算法来减少机器人的倒货作业,提高出入库效率。
数字化和网络化
进入工业4.0时代,企业要实现数字化转型,应该从物流数字化入手。物流贯穿企业业务全流程,而作为物流核心环节的仓储物流系统,其数字化是企业数字化建设的重中之重。智能物流按钮、智能物流标签、智能周转箱技术、物联网技术 、智能传感器技术、赛博物理系统、窄带物联网和5G技术正不断应用到仓储物流数字化建设中。
透明化和可预测性
通过数字化和网络化建设,可以实现仓储物流的可视化管理,下一步是全流程的透明化和对未来业务的精准预测。所谓透明化,在于理解为什么系统中正在发生某些事情,进而建立系统的行为逻辑和规范,为系统的优化奠定基础。要实现透明化,必须首先捕获和分析系统实时数据,也就是建立系统的数字影像。通过透明化可以实现流程的优化,提高物流的速度、效率和质量,降低物流成本。
电子商务时代,客户的订单随机性高,导致电商物流中心的业务需求波动大,这给仓储物流系统的资源配置带来巨大挑战。基于数字化和新型预测方法的物流需求预测分析,对仓储物流系统的建设和运营意义重大。目前预测方法研究大都集中在启发式预测方法和基于数据科学和大数据技术的预测分析方法。
智能化
仓储物流技术发展的下一个目标是智能化。即,在数字化和透明化的基础上,模仿生物和人的智能给仓储物流系统赋予感知、分析、学习和决策的能力;甚至利用“深度学习”技术,让系统具有思维、推理判断和自行解决复杂物流问题的能力。