解决缓存雪崩的6大解决办法

 Redis 雪崩

缓存层承载着大量的请求,有效保护了     存储   层。但是如果由于缓存大量失效或者缓存整体不能提供服务,导致大量的请求到达存储层,会使存储层负载增加,这就是缓存雪崩的场景。

解决缓存雪崩,可以从以下几个方面入手。

 解决缓存雪崩的6大解决办法_设计制作_嵌入式技术

 1.保持缓存层的高可用性

使用Redis 哨兵模式或者Redis 集群部署方式,即便个别Redis 节点下线,整个缓存层依然可以使用。除此之外,还可以在多个机房部署 Redis,这样即便是机房死机,依然可以实现缓  存层的高可用。

 2.限流降级组件

无论是缓存层还是存储层都会有出错的概率,可以将它们视为资源。作为并发量较大的分布式系统,假如有一个资源不可用,可能会造成所有线程在获取这个资源时异常,造成整个系统不可用。降级在高并发系统中是非常正常的,比如推荐服务中,如果个性化推荐服务不可用,可以降级补充热点数据,不至于造成整个推荐服务不可用。常见的限流降级组件如 Hystrix、Sen     ti   nel 等。

 3.缓存不过期

Redis 中保存的 key 永不失效,这样就不会出现大量缓存同时失效的问题,但是随之而来的就是Redis 需要更多的存储空间。

 4.优化缓存过期时间

设计缓存时,为每一个 key 选择合适的过期时间,避免大量的 key 在同一时刻同时失效,造成缓存雪崩。

 5.使用互斥     锁      重建缓存

在高并发场景下,为了避免大量的请求同时到达存储层查询数据、重建缓存,可以使用互斥锁控制,如根据 key 去缓存层查询数据,当缓存层为命中时,对 key 加锁,然后从存储层查询数据,将数据写入缓存层,最后释放锁。若其他线程发现获取锁失败,则让线程休眠一段时间后重试。对于锁的类型,如果是在单机环境下可以使用     Java   并发包下的 Lock,如果是在分布式环境下,可以使用分布式锁(Redis 中的 SETNX 方法)。

分布式环境下使用Redis 分布式锁实现缓存重建,优点是设计思路简单,对数据一致性有保障;缺点是代码复杂度增加,有可能会造成用户等待。假设在高并发下,缓存重建期间 key 是锁着的,如果当前并发 1000 个请求,其中 999 个都在阻塞,会导致 999 个用户请求阻塞而等待。

 6.异步重建缓存

在这种方案下构建缓存采取异步策略,会从线程池中获取线程来异步构建缓存,从而不会让所有的请求直接到达存储层,该方案中每个Redis key 维护逻辑超时时间,当逻辑超时时间小于当前时间时,则说明当前缓存已经失效,应当进行缓存更新,否则说明当前缓存未失效,直接返回缓存中的 value 值。如在Redis 中将 key 的过期时间设置为 60     mi   n,在对应的 value 中设置逻辑过期时间为 30 min。这样当 key 到了 30 min 的逻辑过期时间,就可以异步更新这个 key 的缓存,但是在更新缓存的这段时间内,旧的缓存依然可用。这种异步重建缓存的方式可以有效避免大量的 key 同时失效。

来源:今日头条()IT技术分享

96
56
0
96

相关资讯

  1. 1、Win7怎么操作才能重装和修复声卡驱动?4779
  2. 2、显卡中什么是N卡A卡和公版卡、非公版卡?689
  3. 3、Win11如何恢复到Win10Win11恢复到Win10教程2713
  4. 4、老电脑能装Win11吗?老电脑能不能装Win11详细介绍1476
  5. 5、Win10硬盘无法格式化也无法分区该怎么办?1992
  6. 6、360浏览器怎么缩放页面?360安全浏览器页面缩放教程360
  7. 7、吉吉影音怎么设置AB循环播放?1781
  8. 8、Win7旗舰版无法添加打印机怎么回事?4311
  9. 9、Win1020H2版本微软账户登录不上怎么办?3882
  10. 10、Excel中怎么批量插入图片5083
全部评论(0)
我也有话说
0
收藏
点赞
顶部