精密差分输出仪表放大器的性能优势及实现应用

来源:今日电子,作者:Moshe Ge     rs       te   nhaber;Stephen Lee

采用最先进技术的     模数转换器       ADC   )能够接受差分输入信号,从而允许将来自     传感器   的整个信号路径以差分信号的形式传送给ADC。这种方法提供了显著的性能优势,因为差分信号增加了动态范围,减小了交流声,并且消除了对地噪声。

 精密差分输出仪表放大器的性能优势及实现应用_设计制作_模拟技术

图1a和1b所示的是两种常见的差分输出     仪表放大器       电路   。前者提供单位增益,后者提供了2倍增益。但是,与单端输出的仪表     放大器   相比,这两种电路都会受到增加噪声、失调误差、失调漂移、增益误差和增益漂移的影响。

图1a,1b:设计差分输出仪表放大器的通用方法。上部电路保持增益,下部电路将增益加倍。

In-amp=仪表放大器

Output Voltage=输出电压

op amp=     运算放大器  

 精密差分输出仪表放大器的性能优势及实现应用_设计制作_模拟技术

图2所示是一个没有上述缺陷的差分输出仪表放大器原理图。这种设计充分利用了这样的特性,仪表放大器的输出实际上是其输出引脚(Vo)与参考引脚(     Vr   ef)之间的差。这里的应用是在两个引脚之间加入了一个增益为-1的反相器。

图2:设计差分输出仪表放大器新的改进方法。保持了增益,且不会在输出信号中增加失调、漂移或噪声。

n-amp=仪表放大器

Output Voltage=输出电压

op amp=运算放大器

输入电压是V时,输出电压(Vo–Vref)也应该等于V。参考引脚的电压与输出引脚的电压极性相反。为了满足(Vo-Vref)=V,输出必须为Vo=Vin/2,Vref=-Vin/2。通过向运算放大器的同相端输入端施加+2.5V信号来设置其共模输出电平。运放在节点B产生+2.5V电压。从而,如果对输入端施加+1V电压,那么节点A产生+3V电压,并且节点C则为+2V,因此,输出为+1/2V以上和+2.5V以下。(Vo-Vref)的误差仅是由仪表放大器引起的。由反相放大器和     电阻器   引起的误差诸如失调电压、噪声和增益误差对两个输出端的影响同相,因此它们仅对共模输出有贡献,会被ADC抑制掉。

 精密差分输出仪表放大器的性能优势及实现应用_设计制作_模拟技术

图3是一张性能波形图,上面的波形是一个2Vp-p 1kHz输入。下面是两个输出波形。输出共模电压为+2.5V。图4示出的是差分输出信号的谱密度性能图。

图3:2Vp-p, 1kHz输出信号(上部)。1Vp-p 1kHz差分输出信号(下部)。输出共模电压为+2.5V。

 精密差分输出仪表放大器的性能优势及实现应用_设计制作_模拟技术

图4:差分输出信号谱分析。仪表放大器的输入信号为2Vp-p, 1kHz。

责任编辑:gt

87
100
0
22

相关资讯

  1. 1、高效节能电机与变频节能电机的区别是什么994
  2. 2、兴达鸿业迎上5G风潮单工位“机器代人”提速2679
  3. 3、麻省理工学院推出了一种基于磁共振成像MRI技术的便携式传感器866
  4. 4、电磁兼容设计的十大常见问题解答4947
  5. 5、超声波传感器概述3100
  6. 6、基于DPWM发生器实现模数转换器的设计应用方案3207
  7. 7、工业平板电脑在工业上有哪些应用?870
  8. 8、全球云计算市场规模将达6233亿美元2928
  9. 9、设计面向未来的电梯1353
  10. 10、VR技术将如何改变近视患者的治疗方式3320
全部评论(0)
我也有话说
0
收藏
点赞
顶部