引 言
各种 无线通信 系统的发展,如GSM,WC DMA ,TD—SCDMA,WiMAX和Wi—Fi,大大加速了半导体器件和 射频 功率放大器 的研究进程。射频功率 放大器 在无线通信系统中起着至关重要的作用,它的设计好坏影响着整个系统的性能,因此,无线系统需要设计性能良好的放大器。不同的通信标准中,对放大器的 性能指标要求又不一样。欧洲WCDMA作为3G移动通信主流标准之一,所以对其放大器的研究设计具有很强的工程意义。很多器件厂商针对WCDMA标准,生 产出各自的射频功率管。本文采用飞思卡尔半导体公司的MH—VIC2115功率管对其放大器进行设计,利用Advanced Design Sys te m软件进行输出匹配 电路仿真 。
1 射频功率放大器设计
1.1 MHVIC2115介绍
MHVIC2115作为宽带 集成电路 ,用于基站功率放大器的设计。这个器件采用飞思卡尔最新高压LD—MOS技术,内部集成了三级放大模块。其工作频率为 1 600~2 600 MHz,而WCDMA的工作频段为2 110~2 170 MHz,能满足设计要求。MHVIC2115既可用于输出级放大器设计也适合驱动级设计。本文设计一个驱动级放大器,其增益大于30 dB,增益平坦度为±0.3 dB,P1dB为15W,工作电压为28 V。因为MHVIC2115为三级集成功率管,其栅极偏置有VGSl,VGS2,VGS3,如图1所示。
确定使用MHVIC2115器件后,必须对其输入输出进行匹配,满足一定的带宽、驻波比等要求。考虑到MHVIC2115内部集成了输入匹配 电路 ,所以输入 端口直接接50Ω的微带线。而器件的输出端并没有匹配到50 Ω,需要设计相应的输出匹配电路用来完成器件输出端口与端接负载间的匹配。为了获得最大输出功率或效率,输出匹配电路把最佳负载匹配到50Ω。
1.2 MHVIC2115原理图
参考厂商的datasheet中的原理图,用Protel画出相应的原理图,如图2所示。
1.3 输出匹配仿真
对于MHVIC2115器件,由于无法获取完整的电路模型,本文利用datasheet中测试的数据进行输出匹配电路的设计。根据与Zout之间的共轭关 系,很容易得出器件Zout。然后利用文本编辑器生成一个Zout.slp。Zout.slp文件中 阻抗 值如表1所示。
在ADS中采用S1P数据模型来代替器件的输出阻抗,把模型路径设置成Zout.slp文件对应的路径。整个输出阻抗匹配电路如图3所示,采用微带线和分立 元件来设计。 板材 采用Arlon AD255,其相对介电常数为2.55,介质厚度为0.762 mm,铜膜厚度为35μm。
优化前后的结果如图4所示,优化后S(1,1)小于一24 dB,此时电压驻波比VSWR小于1.13。由于Zott.slp只包含了3个频率点,所以仿真曲线不平滑。
初步仿真后,可以再进行电路参数优化。需要注意, 电容 值在优化时被设置成连续的变量,但是实际厂商的电容值是离散的。所以在优化仿真之后,要把理想电容值改 成离实际电容最近的值,然后再仿真。实际匹配、旁路电容采用AVX厂商的ACCU—P系列的射频微波电容,该电容Q值高,容差小,等效串联 电阻 小,适合放 大器设计。
而输入端口直接接50的微带线,宽度为2。由于器件引脚的间距小,不允许输入端口到引脚的微带线一直为2,需要一个锥形微带线过渡到引脚。
2 PCB 的设计
MHVIC2115输出匹配仿真完成之后,用Protel对其进行 PCB设计 。在画输出电路时,实际微带线的尺寸必须与仿真参数一致。完整的PCB设计如图5所示。
PCB设计中需要注意的是,MHVIC2115器件底面源极接地设计。MHVIC2115器件采用PFT一16封装,而飞思卡尔对PFT一16类型封装的焊盘设 计进行了详细的介绍。考虑到实际 焊接 过程中,焊盘上 过孔 容易出现虚焊,或者孔内有空气填充,还会造成PCB底面焊锡堆积。为了解决上述可能存在的问题,这 里割去相应的焊盘区域,然后采用金属 支座 来承载MH—VIC2115器件。既能解决导电、导热问题,又有利于器件的安装固定。
3 结 语
该文首先介绍了MHVIC2115器件的特性。克服电路模型无法获取问题,采用S1P模型来仿真设计输出匹配电路。仿真结果表明其输出端口的S11小于一 24 dB,电压驻波比VSWR小于1.13,符合设计目标。最后在PCB设 计时 ,提出改用金属支座来承载MHVIC2115器件,用于器件底面源极接地,改善 其导电、导热性,而且利于器件安装固定。
责任编辑:gt