1. 什么是workqueue
Linux 中的Workqueue机制就是为了简化内核线程的创建。通过调用workqueue的接口就能创建内核线程。并且可以根据当前系统 CPU 的个数创建线程的数量,使得线程处理的事务能够并行化。workqueue是内核中实现简单而有效的机制,他显然简化了内核daemon的创建,方便了用户的编程.
工作队列(workqueue)是另外一种将工作推后执行的形式.工作队列可以把工作推后,交由一个内核线程去执行,也就是说,这个下半部分可以在进程上下文中执行。最重要的就是工作队列允许被重新调度甚至是睡眠。
2. 数据结构
我们把推后执行的任务叫做工作(work),描述它的数据结构为work_struct:
struct work_struct {
ato mi c_long_t data; /*工作处理函数func的参数*/
#define WORK_STRUCT_PENDING 0 /* T if work i te m pending execu ti on */
#define WORK_STRUCT_STA TI C 1 /* sta TI c ini TI alizer (debugobjects) */
#define WORK_STRUCT_FLAG_MASK (3UL)
#define WORK_STRUCT_WQ_DATA_MASK (~WORK_STRUCT_FLAG_MASK)
struct list_head entry; /*连接工作的指针*/
work_func_t func; /*工作处理函数*/
#ifdef CONFIG_LOCKDEP
struct lockdep_map lockdep_map;
#endif
};
这些工作以队列结构组织成工作队列(workqueue),其数据结构为workqueue_struct:
[cpp] view pl ai n copy
struct workqueue_struct {
struct cpu_workqueue_struct *cpu_wq;
struct list_head list;
const char *name; /*workqueue name*/
int singlethread; /*是不是单线程 - 单线程我们首选第一个CPU -0表示采用默认的工作者线程event*/
int freezeable; /* Freeze threads during suspend */
int rt;
};
如果是多线程,Linux根据当前系统CPU的个数创建cpu_workqueue_struct 其结构体就是:
[cpp] view plain copy
truct cpu_workqueue_struct {
s pi nlock_t lock;/*因为工作者线程需要频繁的处理连接到其上的工作,所以需要枷 锁 保护*/
struct list_head worklist;
wait_queue_head_t more_work;
struct work_struct *current_work; /*当前的work*/
struct workqueue_struct *wq; /*所属的workqueue*/
struct task_struct *thread; /*任务的上下文*/
} ____cacheline_aligned;
在该结构主要维护了一个任务队列,以及内核线程需要睡眠的等待队列,另外还维护了一个任务上下文,即task_struct。
三者之间的关系如下:
3. 创建工作
3.1 创建工作queue
a. create_singlethread_workqueue(name)
该函数的实现机制如下图所示,函数返回一个类型为struct workqueue_struct的指针变量,该指针变量所指向的内存地址在函数内部调用kzalloc动态生成。所以driver在不再使用该work queue的情况下调用:
void destroy_workqueue(struct workqueue_struct *wq)来释放此处的内存地址。
图中的cwq是一per-CPU类型的地址空间。对于create_singlethread_workqueue而言,即使是对于多CPU系统,内核也只负责创建一个worker_thread内核进程。该内核进程被创建之后,会先定义一个图中的wait节点,然后在一循环体中检查cwq中的worklist,如果该队列为空,那么就会把wait节点加入到cwq中的more_work中,然后休眠在该等待队列中。
Driver调用queue_work(struct workqueue_struct *wq, struct work_struct *work)向wq中加入工作节点。work会依次加在cwq->worklist所指向的链表中。queue_work向cwq->worklist中加入一个work节点,同时会调用wake_up来唤醒休眠在cwq->more_work上的worker_thread进程。wake_up会先调用wait节点上的autoremove_wake_function函数,然后将wait节点从cwq->more_work中移走。
worker_thread再次被调度,开始处理cwq->worklist中的所有work节点...当所有work节点处理完毕,worker_thread重新将wait节点加入到cwq->more_work,然后再次休眠在该等待队列中直到Driver调用queue_work...
b. create_workqueue
相对于create_singlethread_workqueue, create_workqueue同样会分配一个wq的工作队列,但是不同之处在于,对于多CPU系统而言,对每一个CPU,都会为之创建一个per-CPU的cwq结构,对应每一个cwq,都会生成一个新的worker_thread进程。但是当用queue_work向cwq上提交work节点时,是哪个CPU调用该函数,那么便向该CPU对应的cwq上的worklist上增加work节点。
c.小结
当用户调用workqueue的初始化接口create_workqueue或者create_singlethread_workqueue对workqueue队列进行初始化时,内核就开始为用户分配一个workqueue对象,并且将其链到一个全局的workqueue队列中。然后Linux根据当前CPU的情况,为workqueue对象分配与CPU个数相同的cpu_workqueue_struct对象,每个cpu_workqueue_struct对象都会存在一条任务队列。紧接着,Linux为每个cpu_workqueue_struct对象分配一个内核thread,即内核daemon去处理每个队列中的任务。至此,用户调用初始化接口将workqueue初始化完毕,返回workqueue的指针。
workqueue初始化完毕之后,将任务运行的上下文环境构建起来了,但是具体还没有可执行的任务,所以,需要定义具体的work_struct对象。然后将work_struct加入到任务队列中,Linux会唤醒daemon去处理任务。
上述描述的workqueue内核实现原理可以描述如下:
3.2 创建工作
要使用工作队列,首先要做的是创建一些需要推后完成的工作。可以通过DECLARE_WORK在编译时静态地建该结构:
DECLARE_WORK(name,void (*func) (void *), void *data);
这样就会静态地创建一个名为name,待执行函数为func,参数为data的work_struct结构。
同样,也可以在运行时通过指针创建一个工作:
INIT_WORK(structwork_struct *work, woid(*func) (void *), void *data);
4. 调度
a. schedule_work
在大多数情况下, 并不需要自己建立工作队列,而是只定义工作, 将工作结构挂接到内核预定义的事件工作队列中调度, 在kernel/workqueue.c中定义了一个静态全局量的工作队列sta TI c struct workqueue_struct *keventd_wq;默认的工作者线程叫做events/n,这里n是处理器的编号,每个处理器对应一个线程。比如,单处理器的系统只有events/0这样一个线程。而双处理器的系统就会多一个events/1线程。
调度工作结构, 将工作结构添加到全局的事件工作队列keventd_wq,调用了queue_work通用模块。对外屏蔽了keventd_wq的接口,用户无需知道此参数,相当于使用了默认参数。keventd_wq由内核自己维护,创建,销毁。这样work马上就会被调度,一旦其所在的处理器上的工作者线程被唤醒,它就会被执行。
b. schedule_delayed_work(&work,delay);
有时候并不希望工作马上就被执行,而是希望它经过一段延迟以后再执行。在这种情况下,同时也可以利用timer来进行延时调度,到期后才由默认的 定时器 回调函数进行工作注册。延迟delay后,被定时器唤醒,将work添加到工作队列wq中。
工作队列是没有优先级的,基本按照FIFO的方式进行处理。
5. 示例
[cpp] view plain copy
#include
#include
#include
static struct workqueue_struct *queue=NULL;
static struct work_struct work;
staticvoid work_handler(struct work_struct *data)
{
printk(KERN_ALERT"work handler function.\n");
}
static int __init test_init(void)
{
queue=create_singlethread_workqueue("hello world");/*创建一个单线程的工作队列*/
if (!queue)
goto err;
INIT_WORK(&work,work_handler);
schedule_work(&work);
return0;
err:
return-1;
}
static void __exit test_exit(void)
{
destroy_workqueue(queue);
}
MODULE_LICENSE("GPL");
module_init(test_init);
module_exit(test_exit);
序号
接口函数
说明
1
create_workqueue
用于创建一个workqueue队列,为系统中的每个CPU都创建一个内核线程。输入参数:
@name:workqueue的名称
2
create_singlethread_workqueue
用于创建workqueue,只创建一个内核线程。输入参数:
@name:workqueue名称
3
destroy_workqueue
释放workqueue队列。输入参数:
@ workqueue_struct:需要释放的workqueue队列指针
4
schedule_work
调度执行一个具体的任务,执行的任务将会被挂入Linux系统提供的workqueue——keventd_wq输入参数:
@ work_struct:具体任务对象指针
5
schedule_delayed_work
延迟一定时间去执行一个具体的任务,功能与schedule_work类似,多了一个延迟时间,输入参数:
@work_struct:具体任务对象指针
@delay:延迟时间
6
queue_work
调度执行一个指定workqueue中的任务。输入参数:
@ workqueue_struct:指定的workqueue指针
@work_struct:具体任务对象指针
7
queue_delayed_work
延迟调度执行一个指定workqueue中的任务,功能与queue_work类似,输入参数多了一个delay。