什么是降维及常用的降维方法有哪些?

什么是降维及常用的降维方法有哪些?_智慧城市_智慧零售


降维是一个对数据集进行降维的过程,它取许多特征并将其表示为较少的特征。例如,维数缩减可以用来将一个包含20个特征的数据集缩减为几个特征。在无监督的学习任务中,通常使用降维来自动创建基于许多特征的类。为了更好地理解为什么以及如何使用维度约简,我们将研究与高维数据相关的问题以及最流行的降维方法。


维度是指数据集中的特性/列的数量。


人们通常认为,在机器学习中,更多的特征是更好的,因为它可以创建更精确的模型。然而,更多的特征并不一定转化为更好的模型。


数据集的特性在对模型的有用程度方面可能有很大的不同,许多特性并不重要。此外,数据集包含的特征越多,就需要越多的样本来确保不同的特征组合在数据中得到很好的表示。因此,样本数量与特征数量成比例增加。更多的样本和更多的特征意味着模型需要更加复杂,随着模型变得更加复杂,它们对过度拟合变得更加敏感。


减少数据集的维数有几个好处。如前所述,较简单的模型不太容易过度拟合,因为模型必须对特性如何相互关联做出较少的假设。此外,维数越小,训练算法所需的计算能力就越小。同样,对于维数较小的数据集,所需的存储空间也更少。


常用降维方法


降维可以通过特征选择或特征工程来实现。特征选择是工程师识别数据集最相关的特征,而特征工程是通过组合或转换其他特征来创建新特征的过程。


特征选择和工程可以通过编程或手动完成。当手动选择和设计特征时,可视化数据以发现特征和类之间的相关性是典型的。以这种方式执行维度缩减可能会耗费大量时间,因此,一些最常见的降维方法涉及到使用库中可用的算法,如Scikit learn for Python。这些常见的降维算法包括:主成分分析(PCA)、奇异值分解(SVD)和线性判别分析(LDA)。


用于无监督学习任务的降维算法通常是PCA和SVD,而用于有监督学习降维的算法通常是LDA和PCA。在有监督学习模型的情况下,新生成的特征被输入到机器学习分类器中。请注意,这里描述的用途只是一般的用例,而不是这些技术可能使用的唯一条件。上面描述的降维算法是简单的统计方法,它们在机器学习模型之外使用。

42
16
0
98

相关资讯

  1. 1、《小鱼飞飞》即将正式登陆精美原画Q萌首曝1903
  2. 2、《熹妃Q传》全平台公测预下载今日开启493
  3. 3、冠军的野望SD敢达战争要塞锦标赛再开4503
  4. 4、丛林冰川魔幻险情《风之旅团》以真动作穿越4109
  5. 5、《我的战争》穿雾爆本传奇女特工激战553
  6. 6、《自由之战》正统MOBA手游来临独特操作更带感4066
  7. 7、《火炬之光》凤凰降临移动版迎来夏兰之春140
  8. 8、《女主播的游戏》官网隆重上线视频陪玩美女相伴2295
  9. 9、不止是战斗《超能战区》融入烧脑策略玩法1092
  10. 10、《口袋妖怪单机版》安卓首发铸就最强精灵梦4170
全部评论(0)
我也有话说
0
收藏
点赞
顶部