本文将为设计人员介绍各种基于 LED 的背光照明设计方案选项,以及提供在考虑成本因素和各种设计方法利弊的前提下,如何优化系统性能的指引。
LED正成为中小型彩色 显示器 背光照明应用的主流器件。LED的选择是决定显示子系统设计最佳性价比的关键因素。此外,LED驱动IC,尤其是最新的产品,能与较低成本的LED协同工作,透过多种方法提升现有LED的性能 。除亮度控制外,这些驱动IC还能实现精确的亮度匹配, 或允许使用一系列具备不同VF特性的LED。
LED驱动 电路
设计人员在决定便携应用中LED驱动电路的最佳性价比时,可有几种选择,并取决于所设计系统的类型。某些系统侧重于成本,某些注重性能,而大多数则讲求必须达到成本和性能的平衡。系统设计的其中一个约束条件是可用 电池 功率和电压,其它约束条件还包括功能特性,例如针对环境光线作出调整及建立LED的架构(串连、并连或矩阵)。
作为生产工艺的一部分,LED可根据不同参数进行筛分,包括正向电压及特定正向 电流 时的色度和亮度。举例说,白光LED的正向电压范围通常为3.5V 至4V,典型工作电流为15mA 至20mA。当多个LED在一个背光照明设备应用时,这些LED通常都会进行匹配,以产生均匀的亮度。因此,LED 制造 商所提供经“差异筛选”或匹配的LED,在某个特定电压范围内其VF或其它参数都是匹配的。这些VF 差异通常为3.5~3.65V、3.65 ~3.8V ,以及 3.8~4.0V。
一般来说,LED的VF值是系统设计的重要变数。因为由普通电池供电的便携产品如蜂窝电话所使用单一的 锂离子电池 ,其电压范围为2.7 至 4.2 V。如果将系统对电池工作电压的要求设计为不低于3V,设计人员就可以直接使用低至3V且未经稳压的电池电压来驱动LED。
其它经匹配的差异级别包括发光强度和色度。色度决定显示的颜色,大多与执行设计所使用的半导体工艺有关。电气工作条件对色度的影响很小。对于发光强度而言,筛选工艺可 测量 在给定正向操作电流下的发光强度。例如,QTLP601C-EB具有两种发光强度差异级别:I1 的8-16 mcd和I2 的13-26 mcd ,以及三种主要波长差异级别:W1 的 465-470 nm、W2的470-475 nm及W3的475-480 nm。所有差异级别都是通过5 mA正向电流 测试 下建立的。差异筛选工序会增添额外成本 。
使用LED驱动IC优化设计
目前,市面上已有能够驱动多个LED的驱动IC,所提供的功能包括电压提升以至驱动多个串联LED以便与每列包含一个或多个LED的多列LED进行电流匹配。特定驱动IC可提供独立于LED VF的精确电流匹配,使用这类IC可省去VF差异筛选的有关费用。另一项常用功能是亮度控制,有助于提供更多功能和改善 电源管理 。LED会消耗5-20 mA的电流。由于系统中有多个LED,故显示照明部分的功耗占据系统总功耗的重要部分。因此,亮度控制是一项重要功能,会直接影响功耗。较低亮度意味着显示背光照明的功耗较低。
多个LED的亮度匹配
将多个LED连接在一起使用时,正向电压和电流均必须匹配,整个组件才能产生一致的亮度。实现恒定电流最简单的方法,便是将经过正向电压筛选的LED串联起来。筛选工作可由LED供应商进行,以享有若干成本优势,又或可在用户的制造场所完成,但会减少筛选的产量和增加组装成本。筛选过程能够按照设计人员的匹配要求建立已匹配产品的差异等级。
成本考虑
手持设备显示器的照明通常需要4、6或8个LED驱动;显示器越大,所需LED的数量越多。可携式手持设备如PDA便需使用较多的LED。随着系统采用匹配LED的数量增加,有关成本也会因为所需的差异筛选工艺而相应增加。在这情况下,驱动IC提供了良好的解决方案。驱动IC除能控制亮度外,还能全面地匹配亮度,因而可透过具成本效益的途径提升系统性能。
最简单的驱动设计:串联
串联LED能确保供应至各个器件的电流一致。由于LED的VF通常在3.3V或以上,现今普遍的方法是将电压提升至12V以上水平,并驱动串联LED以获得一致的亮度。这就是采用基于 电感 的 DC/DC 设计,而不是电荷泵,因为后者不能有效地将电压提升至所需的电平。图1所示为驱动4个串联LED组件的典型驱动IC电路,它具有从LED到驱动电路的反馈功能和附加的调节 电阻器 ,可以实现亮度调暗功能。
如果总体正向电压VF为12V的4个LED与16V驱动电路一起使用,就必须使用具有升压功能的简单LED驱动电路,以便为每个LED提供充足的电压,这驱动电路可将锂离子电池的2.7至4.2 v电压范围提升至16至17 v,用来驱动LED。这是传统的解决方案。由于经差异筛选LED的VF值存在一个变化范围,LED之间的压差会随之变化,有可能影响亮度的均匀性。
LED驱动IC选项
上面所述的亮度调暗是LED驱动IC的重要新增功能,可通过驱动电路为LED施加PWM调制脉冲,以获得总功率的10~100%。此举能节省功耗,同时也为最终产品提供用户可调节的功能。如前所述,显示器是损耗最多功率的子系统之一。例如,在16V电压下电流为15~20 mA的白光LED,其功耗为240~320 mW。而LED驱动电路的亮度调暗功能可降低整个系统的功耗,延长电池寿命。
现有驱动IC还具有其它功能特点, 包括软起动、 短路 保护,以及能将外围部件数减至最少的LED驱动电路。
并联设计选项
并联驱动是下一步要实施的方案。在并联设计中,多个LED由具备驱动器决定的独立电流电平的驱动电路来驱动。并联设计基于低驱动电压,因此无需带电感的升压电路。此外,并联设计提供低电磁干扰、低噪声和高效率,因而能延长电池寿命。另一个重要优点是这种配置的容错性较强。在串联设计中,一个LED发生故障就会导致整个背光照明子系统失效,而并联设计可避免这种个严重缺陷,提高系统的容错性。
有源电流匹配并联设计
现有两种用于并联配置的驱动IC:一种是具匹配VF的LED驱动IC;另一种是利用未匹配VF 的LED驱动IC。
驱动匹配的LED
图2a中的电路使用具有内部匹配电流源的LED驱动IC,来驱动并联的匹配LED。驱动IC在现有的3.3至5.5V总线电压下运行,LED的电流通过单一的外部 电阻 器来调节。由于不需要DC/DC转换进行升压,故无需采用外部电感,因此电路的电磁干扰和纹波可达到最小。如果电源电压稳定且经过稳压处理,VDD (VIN) 和Vcontrol便可连接在一起。最重要的是,无需为每个LED配备额外的电流设置电阻器来提高效率。如果有更高压的稳定电压,此电路还能为额外的串联LED提供匹配电流,但其电压必须至少为0.3V +N*VF,如图2b所示。
驱动未匹配LED
为了驱动未匹配的LED,并省去与差异筛选有关的成本,便需要使用可为每个LED提供独立电流控制环路的IC。图3所示为驱动白光、蓝光或任何多色LED的电路,并使用具有此项功能的IC来获得均匀亮度。LED可拥有广泛的VF分布,而驱动IC将均匀地匹配各电流以获得均匀的亮度,并可在现有的3.3至5V总线电压下运行。这些电路具有数字化亮度控制功能,由微处理器驱动的PWM来实现,功效高(》90%),而且不产生电磁干扰和纹波。
高效电路
所示为另一种使用未匹配白光LED的电路,可在通常无外升压线路的设备中,如移动电话使用。这个电路的驱动IC具有内置电荷泵升压,直接用锂离子电池驱动多达4个并联LED,并获得均匀亮度。
电路中的驱动IC会测量所有LED的VF,选出最高VF的LED,并将Vout提升至驱动这个最大VF LED所需的最低电平。该IC可驱动白光或蓝光LED,并获得均匀亮度。该电路可为每个LED提供独立的电流控制环路,因而无需进行LED预选或差异筛选。这是真正的数字化亮度控制(0、6、12、18mA),具有内置DC/DC转换的真正PWM控制,带来低噪声、低纹波和低电磁干扰。
矩阵设计:先进的白光LED驱动电路
矩阵设计驱动IC可为多个串联电路提供独立控制。采用高级LED驱动芯片,就可使用未匹配的白光LED,而其升压电路具有智能感应功能,可将电压提升至恰好足够的水平,以驱动具有最高总体VF压降的白光LED串联组件。这种自适应输出电压功能可将电感的体积减至最小,以便节省成本和占位空间。由于升压只提升至最低的电平,保证能满足任何串联信道所需的标称电流,因此能实现高效率。这串联驱动方案可以驱动两个独立的LED组件,各有四个串联LED,并具有独立的亮度控制功能。
每个串联信道具有独立的亮度控制,而且升压电路具有内置肖特基 二极管 ,无需外部二极管,从而节省了 电路板 空间。内置升压电路的功效不低于90%,有助延长电池寿命,且具有软件启动功能、低电磁干扰和极少纹波等特点。各信道独立的LED控制使设计更为灵活,并只需一个驱动器即可同时驱动LCD和键盘。举例说,FAN5608驱动IC带有内置数字/模转换器( DAC ),具有模拟感应功能,可让用户选择使用模拟、数字或PWM方式控制亮度。该驱动IC集成了温度控制功能,可将LED使用寿命提高达50%。
根据应用选择合适的设计方案
LED背光照明应用有多种设计选项。视乎应用的不同,设计方案可以利用经差异筛选的低VF LED直接驱动,以至采用驱动IC来驱动未匹配的LED。现有的设计方案结合众多种类的LED和全线的驱动IC产品,能够优化系统成本、提高系统功效,以及通过有源亮度匹配和容错操作来达致更高性能。
来源;国际led网