伺服系统,亦称随动系统,是一种能够跟踪输 入的指令信号进行动作,从而获得精确的位置、速度或力输出的自动控制系统。大多数伺服系统具有检测反馈回路,因而伺服系统是一种反馈控制系统。按照反馈控制理论,伺服系统需不断检测在各种扰动作用下被控对象输出量的变化,与指令值进行比较,并用两者的偏差值对系统进行自动调节,以消除偏差,使被控对象输出量始终跟踪输入的指令值。
伺服系统是根据输入的指令值与输出的物理量之间的偏差进行动作控制的。因此伺服系统的工作过程是一个偏差不断产生,又不断消除的动态过渡过程。
伺服控制的实例随处可见,如工人操作机床进行加工时,必须用眼睛始终观察加工过程的进行情况,通过大脑对来自眼睛的反馈信息进行处理,决定下一步如何操作,然后通过手摇动手轮,驱动工作台上的工件或刀具来执行大脑的决策,消除加工过程中出现的偏差,最终加工出符合要求的工件。在这个例子中,检测、反馈与控制等功能是通过人来实现的,而在伺服系统中,这些功能都要通过 传感器 、控制及信息处理装置等来加以实现。如数控机床的伺服系统中,位置检测传感器、数控装置和伺服 电动机 分别取代了人的眼睛、大脑和手的功能。
许多机电一体化产品(如数控机床、工业机器人等),需要对输出量进行跟踪控制,因而伺服系统是机电一体化产品的一个重要组成部分,而且往往是实现某些产品目的功能的主体。伺服系统中离不开 机械 技术和电子技术的综合运用,其功能是通过机电结合才得以实现的,因此,伺服系统本身就是一个典型的机电一体化系统。
伺服系统的结构组成
机电一体化的伺服控制系统的结构、类型繁多,但从自动控制理论的角度来分析,伺服控制系统一般包括控制器、被控对象、执行环节、检测环节、比较环节等五部分。
1、比较环节
比较环节是将输入的指令信号与系统的反馈信号进行比较,以获得输出与输入间的偏差信号的环节,通常由专门的 电路 或 计算机 来实现。
2、控制器
控制器通常是计算机或 PI D控制电路,其主要任务是对比较元件输出的偏差信号进行变换处理,以控制执行元件按要求动作。
3、执行环节
执行环节的作用是按控制信号的要求,将输入的各种形式的能量转化成机械能,驱动被控对象工作。机电一体化系统中的执行元件一般指各种电机或 液压 、气动伺服机构等。
4、被控对象
5、检测环节
检测环节是指能够对输出进行 测量 并转换成比较环节所需要的量纲的装置,一般包括传感器和转换电路。
伺服系统设计要求
1、稳定性
伺服系统的稳定性指在系统。上的扰动信号消失后,系统能够恢复到原来的稳定状态下运行,或者在输入的指令信号作用下,能够达到的新的稳定运行状态的能力。
稳定性要求是一项最基本的要求,是保证伺服系统能够正常运行的最基本条件。伺服系统在其工作范围内应该是稳定的,其稳定性主要取决于系统的结构及组成元件的参数,可采用自动控制理论所提供的各种方法来加以控制。
2、精度
伺服系统的精度是指其输出量复现输入指令信号的精确程度。
系统中各个元件的误差都会影响到系统的精度,如传感器的灵敏度和精度、伺服 放大器 的零点漂移和死区误差、机械装置中的反向间隙和传动误差、各 元器件 的非线性因素等。反映在伺服系统上就会表现出动态误差、稳态误差和静态误差,伺服系统应在比较经济的条件下达到给定的精度
3、快速响应性
快速响应性是指系统输出量快速跟随输入指令信号变化的能力,它主要取决于系统的阻尼比和固有频率可以提高快速响应性,但对系统的稳定性和最大超调量有不利影响,因此系统设 计时 应该对两者进行优化,使系统的输出响应速度尽可能快。
4、灵敏度
系统各元件的参数变化等都会影响系统的性能,系统对这些变化的灵敏度要小,即系统的性能应不受参数变化的影响。具体措施为:对于开环系统,应严格挑选各元件;对于闭环系统,对输出通道中元件的挑选标准可适当放宽,对反馈通道的各元件必须严格挑选,以改善系统的灵敏度。