FD05型AGC中频放大器模块的电路工作原理和实现设计

概述

FD05型AGC中频     放大器   模块是用于通讯设备的具有AGC(自动增益控制)功能的中波频段小信号放大器,主要为散射凋制、解凋分系统配套。它可将微弱的中频小信号通过外部可变的控制电压放大为一个所需要的功率输出,其中心频率为70 MHz。

该产品的主要指标如下:

控制电压:Vcon=0~3V

电源     电流   :Icc≤300 mA

输出电压:Vo=0.1~2V

输出最大增益:KM≥60 dB

可控增益范围:A     vr   ≤55 dB

中心频率:fo=68~72 MHz

频带宽度:BW=10~16 MHz

带内平坦度:Fm≤±2 dB

该产品的环境可靠性指标如下:

电源电压范围:+12V±5%(典型值+12V)

外壳工作温度范围:一40~+85℃

存储温度范围:一55~+125℃

此外,该产品采用双列直插模块式,外型尺寸不大于(66.5×46.8×15mm,适用于SJ20668—98微     电路   模块总规范,产品可以每四个一组保持相同的线性控制电压。

设计方案的确定

根据模块的功能要求及环境要求,设     计时   首先初步确定了电路模式,并绘制出电路原理图,然后进一步分析原理框图中所需的     元器件   ,并借助     EDA   仿真来模拟分选元器件,以基本实现电路功能。

根据方案的设计,利用     计算机   平面化没计制板,以厚膜工艺组装,确定的主要工艺流程如图1所示。

 FD05型AGC中频放大器模块的电路工作原理和实现设计_设计制作_制造/封装

程序设计和电路原理

◇设计程序

首先可根据电路功能和该产品各工作部位的要求构画出原理框图和工艺流程,然后细化每一功能所需的元器件和辅助元件,并降额冗余选择,保证元器件质量的可靠性。

◇电路工作原理

H-FD05模块的内部功能框图如图2所示。图中中频输入信号经隔离     电容   、匹配网络放大后,由带通     滤波器   滤除其它杂波,冉经匹配放大,然后通过三级AGC电压控制放大,最后经末级放大隔离输出(直流隔离),使之达到60dB增益的中频输出。考虑到噪声和纹波的干扰,AGC控制电压加了一级LC滤波网络,各级之间均有隔离电容对直流进行隔离,三级AGC电压放大均由     PI   N微波     二极管   整形缓冲,+12V电源加到模块内,各级均有滤波电容对供电电源进行净化,三级AGC放大均备有微调电容以消除信号振荡和调整线性增益。

 FD05型AGC中频放大器模块的电路工作原理和实现设计_设计制作_制造/封装

◇方案的论证和评审

根据该电路的原理、依据和工艺,可由相关专家对电路原理的信号流程,每个元器件的规格型号,尺寸进行认真的分析,对一些有争议的部位或元器件进行一定的修正。滤波器一般应外接,以便于带宽调整,使其电路比较完善,也便于后续工作的实施。

研制过程

◇元器件的选取

根据电路原理应选择可靠元器件,并在     集成电路   中选择满足需要的功能。N1、N2 前级放大选用高精     射频   放大器,N3、N4和N5选用高稳定度中频放大集成电路,N6末级大放选用低温度系数的表贴中频功放,并要求使用温度范同要宽,以满足工作的可靠性。     电阻   均采用1%高精度厚膜电阻,功率电阻均匀分布,以保证高低温及     振动   冲击的稳定性;PIN微波二极管选用耐压高、特性一致、结电容小、全表贴型,并且配对使用;电容均采用高可靠的独石电容,电源滤波电容采用高稳定的X7R和超陶电容相结合,以加强滤波效果;调谐整形电容选用高稳定度的 NP0片电容,保证宽温下工作的低失真;     电感   选用高稳定的微型表贴电感,以确保小尺寸下的低温升和线性输出。

 FD05型AGC中频放大器模块的电路工作原理和实现设计_设计制作_制造/封装

◇结构选择

依据产品的小尺寸、轻重量、工作温度范围宽等要求,同时考虑到国产成熟的配套能力和单位为贯标生产线的现有标准结构,该产品开始定为38线金属壳焊封。由于输出     端子   和外部调谐整形、     测试   端比较多,并且要求引出端有一定的忍性,故选用双列排式引线结构,电源、输入、输出端子分开排列,并增加了引出端子的接地屏蔽,使之达到用户提出的要求。

◇改进

为提高产品特性,使之准确反应放大器的功能,针对降低壳体尺寸和提高精度等要求,除考虑集成电路的应用范围外,还对此采取了相应的转换措施,重点解决表贴元器件的尺寸,使之壳体尺寸降为28线平行封焊,壳体尺寸从最大的66.5×46.8× 15mm降至41×28×6mm;另外还加强了PIN二极管的一致性配对(每块三个,四块一套共l2只)从而提高了产品的精度。

设计技术难点及解决措施

◇结构布局

该AGC中频放大器的中心频率为70 MHz(属高频范围),其结构布局非常重要。在电路设计初期,虽然根据引线尺寸结构和电路流程进行了精细布局,缩短走线,靠近各引线端,控制线宽和线间距。但电路仍不理想,在信号衰减60dB时就被埋没,信号为0dB、10dB时就有自激振荡,通过大量的实验和消自激电容的调整以及穿     插接   地,使之勉强在宽增益下达到输出要求。但在壳体尺寸进一步降低时,根据这些数据整理和前后级屏蔽地线分级隔离,重新布局绘制平面厚膜电路,尤其是相邻强弱信号的地线屏蔽使其对微弱信号的干扰减少。另外,输入、输出分别设计在陶瓷     基板   的两头对角,内部电路流程设计成S走线,并如图3所示分别隔离,最终才达到指标要求,即使这样,在高低温实验时仍有不稳定现象。通过微调电容和壳体接地点实验,终于发现壳体的影响和端口驻波反射、内部功率电阻对射频放大器的干扰影响。经过再次改进电路布局,将多余端线     接口   引线直接焊到基板,输入、输出端口采用高频插头以及壳体大面积接地,包括基背面导电带接地,并调大功率电阻的面积,减小发热,才使之能在高低温下稳定可靠的工作,同时还使其以自身来补偿输出自激。

◇采用微波二极管提高电路精度

该AGC中频放大器的三级电压增益放大均有三只PIN微波二极管 (2K4D)整形缓冲,它对输出增益的一致性和增益控制电压值尤其重要,该二极管的参数为:反向电压VB≥200 V、正向微分电阻Rr≤1Ω、结电容CP≤0.40PF、耗散功率PW≥0.3w。开始组装时,只注意到满足军品二极管的通用特性,但产品的一致性(相对控制电压值各对应的各输出幅值)都没有引起足够的重视,无法按用户要求的四个一组进行配套,即容易造成生产成本的浪费。在初次问题分析中始终没有找到问题所在,只是认为三个中放电路的不一致。经与用户探讨和试验摸索发现:微波二极管的正向微分电阻和结电容直接影响其输出一致性。事实上,二项参数一起配对并且一块三只,四块一组共12支要求一样也比较困难,组装前的筛选配对很难进行。之后经过逐级分析、微调试验,才能总结出它的变化规律。实际上,只要控制好三级中频放大对应位置的二极管的一致性,即可达到输出对应。至此,便可采用精分微波二极管的结电容,将其参数一致性的结电容(精确到0.01PF)装在一起,以减少配套的工作量。在组装时,将一致的二极管焊在同一级的位置上,从而提高了产品的合格率,达到了用户要求。但针对各批次的一致性精度,还需掌握其规律进行控制,故要继续统计分类,保证用户放心使用和更换。

产品特点

因为该放大器独特的通用性,与同类产品相比,针对原分立器件组装的AGC中频放大器专用模块,该产品除保证了原有的电特性有所提高以外,还有如下一些特点:

(1)模块尺寸小,引出端采用标准28线平行封焊,插拔更换比较方便。

(2)重量轻,     机械   可靠性好。由于采用全表面贴装结构,元器件全部小型化、微型化,使之重量远远低于分立器件,同时抗振动冲击能力增强,不会出现引线振动冲断。

(3)采用全金属接地屏蔽、调谐方便。由于备份调整端子多,带通滤波器外接,故可根椐需求很容易改变中心频率和增益范围等。

(4)模块产品尺寸如图4所示。

 FD05型AGC中频放大器模块的电路工作原理和实现设计_设计制作_制造/封装

(5)该放大器的引出端排列符合图5规定。表1所列是其引出端功能。

 FD05型AGC中频放大器模块的电路工作原理和实现设计_设计制作_制造/封装

结论

表2给出了该放大器的实测数据与要求指标的比较。

该产品在生产和调试过程中,严格按照制定好的工艺流程和质量控制进行。加之表面组装的厚膜工艺和壳体封装工艺都比较成熟,因而其实测数据完全满足要求,且已通过设计定型。本AGC中频放大器模块可取代由分立器件组装的电路形式。该模块是中频放大器专用模块的一个新品种,为今后同类产品的研制提供了相对很好的经验。

责任编辑:gt

65
98
0
84

相关资讯

  1. 1、人工智能有助提升医学图像质量3541
  2. 2、Rokid发布三款新产品:智能音箱、AI芯片和AR眼镜542
  3. 3、对话觉非科技CEO李东旻:自动驾驶行业还没意识到高精地图的价值1133
  4. 4、预计我国网络安全市场规模到2021年可达926.8亿元2201
  5. 5、苹果专利显示Mac或将集成眼球追踪技术2271
  6. 6、光耦的输入特性以及输出特性分别什么?3241
  7. 7、风雨传感器感知天气变化再也不怕出门下雨忘关窗592
  8. 8、中科院-问天量子-泰克科技三方成立“量子信息联合创新平台”!4580
  9. 9、便携式生物传感器可通过汗液检测人体健康指数3809
  10. 10、Bino3D视觉传感技术应用落地智能设备将拥有3D眼睛2793
全部评论(0)
我也有话说
0
收藏
点赞
顶部