在FPGA开发中尽量避免全局复位的使用?(2)

在Xilinx 的FPGA器件中,全局的复位/置位信号(Global Set/Reset (GSR))(可以通过全局复位管脚引入)是几乎绝对可靠的,因为它是芯片内部的信号。如果所有的触发器都使用这一全局复位信号,则GSR信号将形成一个高扇出的网络(有兴趣的朋友可以在综合工具中查看)。虽然在启动顺序中,它可以与一个用户自定义的时钟进行同步,但是想让它与设计中的所有时钟信号进行同步是不可能的;比如,一个Xilinx FPGA中可能含有多个DLL/DCM/PLL时钟处理模块,每个模块又可以产生多个时钟信号,在各个模块内部进行时钟信号的同步是可行的,然而想让所有时钟信号同步是完全不可行的——从DCM的分布上就可以看出来:中间相隔的长距离布线对高频时钟信号的延时显著增大,进行同步自然无法做到。于是,在时钟信号频率越来越高的情况下,全局复位信号便开始成为时序关键。解释如下:

 在FPGA开发中尽量避免全局复位的使用?(2)_设计制作_可编程逻辑

图1 给出了被两个时钟信号的边沿截断的复位信号的时序图,第一行是时钟信号,第二行是器件复位管脚上的信号,第三行是到达触发器复位端的复位信号。为了使触发器进行有效的复位,在有效的时钟边沿到来之前,复位信号应该被保持至少一个建立时间(时钟信号的简历时间)。可以看出,时钟信号的频率越高,用来分配复位信号的可用时间就越少。而且考虑到全局复位信号往往是高扇出的的网络,想在这个庞大的网络中满足苛刻的时序要求是非常困难的。在经常使用的异步复位的设计中,更没有办法来保证所有的触发器都可以在同一个时钟边沿被释放,即使存在用来分配复位信号的可用时间。这一点从图2中可以看出。

 在FPGA开发中尽量避免全局复位的使用?(2)_设计制作_可编程逻辑

图2给出了异步设计中复位信号的时序图。可以看出,在A时刻产生的复位信号,将在第一个时钟信号的有效边沿产生,而在C时刻产生的复位信号将在第二个有效的时钟信号边沿产生。在B时刻,触发器很难有效定义哪一个复位信号是有效的,这将导致亚稳态的产生。
随着时钟信号频率的增高和器件规模增大带来的潜在的时钟偏移,在同一个时钟边沿对所有的触发器进行是否已经几乎是不可能的了。图3显示了高时钟频率下的复位时序图。

 在FPGA开发中尽量避免全局复位的使用?(2)_设计制作_可编程逻辑


7
18
0
80

相关资讯

  1. 1、白敬亭岑宁儿正在恋爱?工作室否认,网友:文案风格像是白敬亭3357
  2. 2、《画皮》导演点赞郭敬明改编,认为改得很聪明,目的迎合卖腐审美3541
  3. 3、《杀戒》终极版海报发布6月9日“戒杀疗爱”4375
  4. 4、李星文:颁奖前夕,再掂量一下金鸡提名影片2201
  5. 5、演技不被认可?“新四小花旦”唯独关晓彤受质疑,简直太尴尬了2569
  6. 6、成龙《宝贝计划》中的萌娃,如今长成啥样了?厌世高级脸帅呆了2123
  7. 7、冯绍峰暴露家里地位,听到赵丽颖反驳立马改口!916
  8. 8、《催眠大师》胡静水下拍戏老公携礼亲密探班5058
  9. 9、2020年票房排行榜Top10,第10名和第1名差了27亿!4595
  10. 10、《老板娘》徐冬冬再演大嫂,王晶从未力捧,但她做到满分727
全部评论(0)
我也有话说
0
收藏
点赞
顶部