随着世界连接得越来越紧密,数据存储和处理的需求呈指数增长,因此我们越来越需要新材料更高效地存储和处理数据。其中典型的一种就是磁性斯格明子材料。日前, 美国休斯敦大学物理学家朱经武领导的国际科研团队报告了一种新型化合物,它可以通过采用高压在室温条件下保持住斯格明子特性。
斯格明子是什么?
磁场中隐藏着幽灵般的形状,它们不像闪电或光束那样由物质构成。闪电将一组电子从天空一直带到地面,而照射到你脸上的阳光则大部分是由从太阳传播数百万英里来到地球的光子组成的。
但是磁场包含了一种叫做斯格明子(skyrmion)的东西,它不同于电子和光子;斯格明子是相互环绕的磁场线组成的结。当它从一个点飘移到另一个点时,斯格明子就会从已经存在的磁力线中重生。这种磁场线结之所以能够紧密地结合在一起,是因为磁力线相互之间无法通过。所以,虽然斯格明子是无形的,并且与我们习惯思考的物体不同,但它们的行为更像是有形的东西。
斯格明子,由英国物理学家托尼·斯格明(Tony Hilton Royle Skyrme)于1962年首次发现,由他的名字命名。简单说,斯格明子是一种具有准粒子特性,并且受拓扑保护的自旋结构。其中电荷以漩涡状稳定排列,电荷虽可被重新移动组合,但这种结构不会改变。
斯格明子的尺寸可以小到纳米级,有着受拓扑保护的稳定性。同时,驱动斯格明子状态改变的电流密度,比驱动传统磁畴所需的低5到6个量级。由于具有这些卓越的特性,斯格明子被普遍认为是高密度、高速度、低能耗的新一代磁存储器件的理想信息存储单元之一。
我国学者在斯格明子研究上也取得了不少进展。深圳大学纳米光子学研究中心杜路平、袁小聪教授的研究成果“近场光学旋涡中的光学斯格明子结构”入选2019年度中国光学十大进展。据悉,该研究在国际上首次揭示了由光的自旋-轨道耦合产生的“光学斯格明子”结构,为微纳尺度的光场调控提供了全新的思路。相关成果发表在2019年4月发表的《Nature Physics》杂志上。
创新: 室温下的斯格明子
近日,美国休斯敦大学德克萨斯超导中心创始主任、物理学家朱经武(Paul Ching-Wu Chu)领导的国际科研团队报告了一种新型化合物,它可以通过采用高压在室温条件下保持住斯格明子特性。这项研究成果也表明,采用化学压力在环境压力条件下保持这种特性的潜力,为未来的商业应用提供了保障。
邓量子(左)与朱经武(图片来源:休斯敦大学)
这项研究的论文以“Room-temperature skyrmion phase in bulk Cu2OSeO3 under high pressures”为题,发表在《美国国家科学院院刊(Proceedings of the National Academy of Sciences)》上。
斯格明子,是对于一块均匀磁体来说最小可能的扰动,一个被扭曲旋转的自旋包围着的反向磁化的点状区域。这些极小的区域,有可能被非常小的电流移动,从而使得这种材料有望用于高密度的信息存储。但是,斯格明子状态通常仅存在于非常低且狭窄的温度范围内。例如,在朱教授及其同事们研究的化合物中,斯格明子状态一般来说仅存在于约3开尔文的狭窄温度范围内,即55K到58.5K之间(零下360.7华氏度到零下354.4华氏度之间),因此对于大部分应用来说都是不切实际的。
朱教授表示,研究人员们采用硒氧化铜化合物,能够显著拓展斯格明子状态存在的温度范围,达到300K,大约80华氏度,接近室温。
休斯敦大学德克萨斯超导中心研究员、论文第一作者邓量子(音译)表示,采用他和同事们开发的一项特殊技术,他们首次成功地在低于8GPa的压力下探测到室温条件下的斯格明子状态。
论文通讯作者朱教授表示,研究人员们也发现, 硒氧化铜化合物随着压力的增加经历了不同的结构相变,表明斯格明子状态有可能比以前想象的更普遍。
朱教授表示:“我们的成果表明了斯格明子对于底层晶格的不灵敏性。在其他的化合物中,也可能有更多的斯格明子被发现。”研究表明,在硒氧化铜化合物中保持斯格明子状态所需的压力,可以通过化学方法仿制,使其可工作在环境压力下,这对于潜在的商业应用来说是另外一个重要要求。
这项工作有点类似于朱教授及其同事们在高温超导方面所作的工作。1987年,他们宣称通过采用较小的等价离子取代化合物中的离子,在钇钡铜氧(YBCO)中稳定了高温超导特性。
1】Pollard, S. D., Garlow, J. A., Yu, J., Wang, Z., Zhu, Y., & Yang, H. (2017, March 10)。 Observation of stable Néel skyrmions in cobalt/palladium multilayers with Lorentz transmission electron microscopy. Nature Communications.
2】Liangzi Deng, Hung-Cheng Wu, Alexander P. Litvinchuk, Noah F. Q. Yuan, Jey-Jau Lee, Rabin Dahal, Helmuth Berger, Hung-Duen Yang, Ching-Wu Chu. Room-temperature skyrmion phase in bulk Cu2OSeO3 under high pressures. Proceedings of the National Academy of Sciences, 2020; 201922108 DOI: 10.1073/pnas.1922108117