近期,来自美韩高校的研究人员采用一种简单的逐层涂覆技术,开发了一种纸质柔性超级电容器,能为可穿戴设备供电。该超级电容器使用金属纳米颗粒在纸中涂覆纤维素纤维,创造出具备高能量和高功率密度的超级电容器电极,实现了迄今为止具备最佳性能的基于纺织品的超级电容器。
技术背景
能量存储装置通常根据三种指标来判断:能量密度、功率密度和循环稳定性。与电池相比,超级电容器通常具有高功率密度,但是能量密度低,即比电池的存储电量的能力差。为了改善这种情况,美国佐治亚理工学院机械工程学院助理教授Seung Woo Lee及其来自高丽大学化学与生物工程系的合作者Jinhan Cho着手提高超级电容器的能量密度,同时保持其高功率产出。
技术概要
新的纸质电容器技术通过在纸中注入导电和电荷储存材料,产生大的表面积,用作电极的集流器和纳米颗粒储存器。测试表明,使用该技术制造的电容器可以折叠数千次而不影响电导率。
实现过程
研究人员首先将纸样品浸入含有胺表面活性剂材料的溶液的烧杯中,这种溶液用于将金纳米颗粒粘连到纸上。接下来,将纸浸入含有金纳米颗粒的溶液中。由于纤维是多孔的,所以表面活性剂和纳米颗粒进入纤维并变得牢固附着,在每条纤维上形成保形涂层。
通过重复浸渍步骤,研究人员创造了一种导电纸,在其上添加了金属氧化物储能材料的交替层,如氧化锰。这种由配体介导的逐层工艺方法有助于最小化相邻金属和/或金属氧化物纳米颗粒之间的接触电阻。使用在室温下完成的简单工艺,可以构建层以提供所需的电性能。
Lee表示,这基本上是一个非常简单的过程,这种逐层工艺直接在烧杯中交替进行操作,在纤维素纤维上提供了良好的保形涂层,因此可以折叠所得到的金属化纸而不损坏导电性。
上图左侧为普通纸张,右侧为加入金属纳米颗粒的导电纸