目前,机器视觉技术已经实现了产品化、实用化,镜头、高速相机、光源、图像软件、图像采集卡、视觉处理器等相关产品功能日益完善。机器视觉领域新技术爆出,通用式三维即时视觉传感技术将为机器视觉再添浓墨重彩的一笔。
随着信息技术的发展,为计算机、机器人或其他智能机器赋予人类视觉功能,成为科学家们的奋斗目标。目前,机器视觉技术已经实现了产品化、实用化,镜头、高速相机、光源、图像软件、图像采集卡、视觉处理器等相关产品功能日益完善。机器视觉领域新技术爆出,通用式三维即时视觉传感技术将为机器视觉再添浓墨重彩的一笔。
1、什么是“机器视觉”
与计算机视觉相比,机器视觉偏重于计算机视觉技术工程化,能够自动获取和分析特定的图像,对准确度和处理速度要求都比较高。一般而言,计算机视觉多用来识别“人”,而机器视觉则多用来识别“物”。
机器视觉是人工智能正在快速发展的一个分支,是研究用计算机来模拟生物视觉的科学技术。机器视觉系统的首要目标是用图像创建或恢复现实世界模型,然后认识现实世界。其具体操作方法是通过机器视觉产品将被摄取目标转换成图像信号,传送给专用的图像处理系统,得到被摄目标的形态信息,再根据像素分布和亮度、颜色等信息将其转变成数字化信号,图像系统对这些信号进行各种运算来抽取目标的特征,进而控制现场设备的动作。
说起视觉,人们并不陌生。近年来,作为重要的生物识别技术之一的人脸识别技术飞速进步,“刷脸”可以实现考勤、支付、身份验证等操作,已经成为安全系数较高的身份识别技术。不过,人脸识别技术属于计算机视觉而非机器视觉,这两种技术既有区别又有联系。
张广军编著的《机器视觉》一书中这样区分两种技术:计算机视觉是采用图像处理、模式识别、人工智能技术相结合的手段,对目标物体进行识别,确定目标物体的位置和姿态;机器视觉则偏重于计算机视觉技术工程化,能够自动获取和分析特定的图像,功能主要为物体定位、特征检测、缺陷判断、目标识别、计数和运动跟踪等。
具体而言,计算机视觉应用的场景相对复杂,要识别的物体类型也多,形状不规则、规律性不强,有时甚至很难用客观量作为识别的依据,比如识别年龄、性别,深度学习比较适合计算机视觉,对于光线、距离、角度等条件要求较低;而机器视觉场景相对简单固定,在同一应用中识别的类型少,规则且有规律,但对准确度和处理速度要求都比较高,一般机器视觉的分辨率远高于计算机视觉,而且往往要求实时,处理速度非常关键。一般而言,计算机视觉多用来识别“人”,而机器视觉则多用来识别“物”。
2、机器视觉应用广泛
只要是需要对物体进行识别、特征判断和检测,机器视觉就可以大展拳脚。如今,在农业、工业、医学等领域,机器视觉技术因其非接触、速度快、精度高、现场抗干扰能力强等突出优点,得到了广泛应用。
近几十年来,视觉系统因其非接触、速度快、精度高、现场抗干扰能力强等突出优点,使机器视觉技术在农业、工业、医学等领域得到了广泛应用。只要是需要对物体进行识别、特征判断和检测,机器视觉就可以大展拳脚,将任务完成得又快又好。
比如在农业生产中,有一部分工作是对农作物或农产品的外观进行判断,如水果品质检测、果实成熟度判别、作物生长状况以及杂草的识别等。这些过去主要依靠人的视觉进行辨别和判断的工作可以由3D影像技术近几年开始复兴,但这种技术尚无法全景展现多视角的真实生活。来自麻省理工学院媒体实验室的“相机文化”团队正在研发一种新型的3D视频投影系统,利用这一系统,观看者不需佩戴眼镜便可以不同的透视角度来观察同一个物体。这个研发团队将该系统视为现有3D技术和真正的全景3D视频之间的一个过渡技术。
从某种意义上说,3D投影技术的发展史与电影本身的发展史同样漫长。几十年来,双色投影系统、偏光投影系统、多机投影系统曾各领风骚,但又都好景不长。人们始终力求使这项技术变得越来越经济实用,当然,如果观看时不用戴眼镜,而且看久了也不会恶心、头痛就更好了。来自MIT的这支团队研发的无需戴眼镜即可观看3D影像的投影系统有着视角宽、清晰度高、机械结构简单、安装简便等优点,而且成本比同等质量的传统产品更低。他们的设计思路是,在3D成像技术发展得更成熟之前,将这款投影仪作为一个短期的过渡性解决方案,让更多还在使用传统2D系统的用户享受到3D画面。团队成员认为此项技术适用于产品的协同设计、医学成像及娱乐领域。
这一系统并非简单地利用平行视觉产生的错觉来生成立体影像,而是能够生成看上去画面中的物体在真实移动的影像,当观众从不同角度看同一个物体的时候,总能有看到实物的感觉。此外,它的分辨率和对比度都比传统的2D视频系统要高。
这个投影仪的核心部件是两道LCD液晶屏,它们工作时如同被安装在背景光源和镜头之间的两个微型LCD显示器。第一道LCD屏幕产生特定角度的图像,这些图像以特定的角度经过第二道LCD屏,之后图像通过一系列像开普勒望远镜那样排列的镜头,再穿过一个由多条垂直透镜组成的透明投影屏,这个透明投影屏有点像那种从不同角度可以看到不同画面的3D立体画上用到的折射塑料片。这样形成的画面,从8个不同的角度上观察,可以感到画面中物体的视角变换。
两层LCD液晶屏每秒钟可刷新图像240次,这个速率低于新款电视机,但已10倍于以标准速度放映的电影。该系统工作时需要很大的带宽,但这同时也为其显示超高分辨率的视频提供了更多的可能。这种可能性来源于该系统使用的数据压缩算法致力于更好地再现图像的边缘而不是全部主体,因为物体在移动或转动时其边缘的变化更大。这种算法还能生成对于LCD来说难以实现的接近于“真正的黑色”的图像,以此来产生有着强烈对比度的明亮图像。
该系统提升成像质量的另一个方法是通过图像光线彼此干涉来实现的,通过这种方式,画面能获得更高的分辨率,但这要求非常大量的实时计算。此外,该系统工作时并不是简单地放大图像,因为这样会缩小3D投影的视角,它是以像素为单位来扩展图像。
据了解,此种调制器的“图像刷新率”达240fps,当然由于该系统支持超高清视频,因此其工作所需的带宽也会相当巨大。MIT小组成员认为,该技术更有望在医疗成像与娱乐领域大展手脚。
来源:本文来自投影时代