在4月13号刚结束的OReilly和Intel AI Conference上,美团点评的配送算法策略架构师郝井华博士详细介绍了美团外卖即时配送业务的重难点,让我们来看看大数据文摘整理的演讲精华。
郝井华,美团点评研究员
美团外卖是全球最大的外卖平台,以及全球最大的即时配送平台。其共有骑手60万,签约商家150万,每天配送外卖1800万单。
美团要做的是即时配送,也就是在一个小时之内把订单送到客户手中。那么配送模式是如何配置的呢?60万骑手如何能够高效率低成本地工作?
优化配送模式
后台是把一个城市是划不同的区域,用户只有处在特定的区域内打开App才能看到这个区域内的商家,才能点这个商家的订单。每一个区域都有特定的骑手为区域内的商家服务。每个区域每天都有大量的订单,如何高效地提升资源的配置效率,是美团外卖想要解决的痛点。
在实施层面做出实时的匹配,也就是,用户下单的时候涉及的配送费的动态设定,订单的指派,以及骑手的执行。举一些例子,比如说商家配送范围的规划,一些有争议的小区需要划到哪个区域,划分到各个区域产生的成本如何,收益又如何?加价机制其实是比较难确定的,加多少,往哪些方向上加?这些都是需要考虑的。
然而人工的方式又会带来许多的问题,比如说在上万个区域中每个区域都会有一个调度员进行订单分配,调度员显然考虑配送模式的时候或多或少会出现低效率问题。还有一个其实也是比较大的问题,人数太多,就会出现或多或少的腐败问题。比如说,有权力的调度员往往会把订单给和他关系比较好的人。
在早期的时候,规模比较小,这些问题还不突出。但是当达到现在美团的体量的时候,这些问题就会变得很严重。因此就需要采用新的、基于大数据、人工智能的解决方案。
拥有一个好的模型只是第一步,如何把模型进一步执行、优化,其实是需要花费许多功夫的。
当骑手到店之后,因为店里现有的用户会选择打包或者堂食,所以商家影响外卖出餐的时间是多因素的。另外商家的位置也是会影响配送时间的,在马路边上的商家,骑手到店方便,那么就会缩短取餐时间,如果商家是在高楼层,相对来说时间就会长一些。
对这一简单的流程进行优化,不可能进行一个商家一个商家地决策,需要用到AI技术。
一些线下的流程也需要算法进行优化,例如我们需要增加新的商家,那些商家能够签约,哪些商家又能够优先签约,签约之后给他制定多少的配送费等等。
提高骑手效率
在基础建设方面,要有一个大数据平台,要保持业务层面和机制的整体运行,在这个基础之上,还需要机器学习的平台,在这之上有许多机器学习的模型,方便对数据进行训练学习。在这两个基础之上还有大量业务的架构。
订单分给谁需要考虑用户体验,骑手的体验,商家体验,平台的配送成本等等。现在面临的主要难点是在考虑用户体验的情况下,如何让骑手的效率最高。
将订单分配给某个骑手,需要考虑他是不是顺路,他是不是交通比较熟,是不是效率能够保证。还有一些质量要求,例如用户点了面条,就要及时的送到,否则就会影响口感。其实留给智能助手考虑的时间不是很多,骑手的位置是不断在变化的,可能上一秒他还适合配送这一单,但是在这一秒就不适合了。
在一些工业场景,在用算法解决一些问题的时候,并不是算法为王。需要设计一个整体的方案,需要了解企业场景,业务场景。因此算法的改进优化需要多场景的兼顾。这些不可能一下全面覆盖,需要一个点一个点的去涉及。在没有摸清问题的边界的情况下,最好不要对算法进行优化。
技术上来说主要是两类,一方面是机器学习的方法技术,另一方面是运输优化。机器学习解决一些数据的统计和数据的规律分析。当模型的边界比较清晰的时候,就需要运输优化来解决一些问题。
数据工作是第一步,需要提升所有的数据的精度,提升数据覆盖的层面。一些简单的数据经过统计就可以知道。另一些数据获取则更复杂,比如商户的位置,这些位置是人上报的,这就可能存在因为线下利益关系而上报错误的位置。这时候我们就需要利用骑手的一些行为,利用聚类的方法,掌握商家的真实位置。更复杂的场景,比如上文提到的预估出餐时间,需要一些弱监督学习的方法,根据骑手的反馈,进行统计分析。
ETR问题也是需要考虑的,其实就是怎么样去估计一个路径上每一个点的时间。比如说骑手从一个地方出发,给他规划一个线路,他应该在最少的时间内配送最多的订单且路程最短。需要给每一个节点规划出什么时间可以完成。这个问题意义很大,因为在做订单分配的时候,要考虑是不是能准时送达,准时与否非常影响用户的体验。
未来要做的是通过多维度协同,实现全局最优化。需要考虑业务维度,空间维度,时间维度。业务维度指送达时间设定、动态定价、运力融合。空间维度指跨区调度、柔性边界、全城优化。时间维度指动态压单、最优指派、配送引导。